skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "O’Neill, Maura_R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Triply periodic minimal surface lattices have mechanical properties that derive from the unit cell geometry and the base material. Through computation software like nTopology and Abaqus, these geometries are used to tune nonlinear stress–strain curves not readily achievable with solid materials alone and to change the compliance by two orders of magnitude compared to the constituent material. In this study, four elastomeric TPMS gyroids undergo large deformation compression and tension testing to investigate the impact of the structure's geometry on the mechanical properties. Among all the samples, the modulus at strainεvaries by over one order of magnitude (7.7–293.4 kPa from FEA under compression). These lattices are promising candidates for designing multifunctional systems that can perform multiple tasks simultaneously by leveraging the geometry's large surface area to volume ratio. For example, the architectural functionality of the lattice to bear loads and store mechanical energy along with the larger surface area for energy storage is combined. A compliant double‐gyroid capacitor that can simultaneously achieve three functions is demonstrated: load bearing, energy storage, and sensing. 
    more » « less